
Three-dimensional elliptic solvers for interface
problems and applications

Shaozhong Denga, Kazufumi Itob, Zhilin Lib,*

a Department of Mathematics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
b Center for Research in Scientific Computation and Department of Mathematics,

North Carolina State University, Raleigh, NC 27695, USA

Received 1 March 2002; received in revised form 2 October 2002; accepted 9 October 2002

Abstract

Second-order accurate elliptic solvers using Cartesian grids are presented for three-dimensional interface problems in

which the coefficients, the source term, the solution and its normal flux may be discontinuous across an interface. One

of our methods is designed for general interface problems with variable but discontinuous coefficient. The scheme

preserves the discrete maximum principle using constrained optimization techniques. An algebraic multigrid solver is

applied to solve the discrete system. The second method is designed for interface problems with piecewise constant

coefficient. The method is based on the fast immersed interface method and a fast 3D Poisson solver. The second

method has been modified to solve Helmholtz/Poisson equations on irregular domains. An application of our method

to an inverse interface problem of shape identification is also presented. In this application, the level set method is

applied to find the unknown surface iteratively.

� 2002 Elsevier Science B.V. All rights reserved.

Keywords: 3D elliptic interface problem; Irregular domain; Discontinuous coefficient; Discrete maximum preserving scheme; Quadratic

optimization; Algebraic multigrid; Shape identification; Level set method

1. Introduction

In this paper, we develop two finite difference methods for three-dimensional interface problems using

Cartesian grids. Let X be a domain in R3 and C be an arbitrary piecewise smooth surface in X. The interface
C divides X into two sub-domains Xþ and X� and therefore X ¼ Xþ [X� [C. We consider the elliptic

equation of the form

r � ðbðx; y; zÞruðx; y; zÞÞ þ kðx; y; zÞuðx; y; zÞ ¼ f ðx; y; zÞ; ðx; y; zÞ 2 X � C; ð1Þ

with a boundary condition on oX. The coefficients b; k, and the source term f may be discontinuous across

the interface C.

Journal of Computational Physics 184 (2003) 215–243

www.elsevier.com/locate/jcp

*Corresponding author.

E-mail addresses: shaodeng@uncc.edu (S. Deng), kito@math.ncsu.edu (K. Ito), zhilin@math.ncsu.edu (Z. Li).

0021-9991/02/$ - see front matter � 2002 Elsevier Science B.V. All rights reserved.

PII: S0021-9991 (02)00028-1

mail to: shaodeng@uncc.edu

Due to the discontinuity in the coefficient b, or/and the source/dipole distributions along the interface C,
the solution and the normal flux may be discontinuous across the interface C and can be written as

½u� ¼ wðs1; s2Þ; ½bun� ¼ vðs1; s2Þ; ð2Þ

where w and v are two known functions defined only on the interface C, un ¼ ou=on ¼ ru � n is the

limiting normal derivative of u, n is the unit normal vector pointing to Xþ side. The interface C is ex-

pressed as a parametric form ðxðs1; s2Þ; yðs1; s2Þ; zðs1; s2ÞÞ, the jump ½u� is defined as the difference of the

limiting values of u from Xþ and X� sides. We refer the readers to [7–9] for more discussions on the jump

conditions.
The problem can be solved by body fitted finite element methods, see [2], for one example; the ghost fluid

method (GFM) [12] (which is first-order accurate in the infinity norm but has a symmetric linear system);

fast solvers based on integral equations (assuming b is a piecewise constant), see [4,13], for example; the

immersed interface method (IIM) reported in [7,17] for example; and possibly some others. These methods

have been described in details for two-dimensional problems. Despite the fact that the extension of these

methods to three-dimensional (3D) problems may be straightforward, the implementation of these methods

in 3D can be very different and few have appeared in the literature.

In this paper, we first develop the maximum principle preserving scheme for the interface problems with
variable but discontinuous coefficient by requiring the resulting finite difference matrix be an M-matrix

using constrained optimization techniques. The M-matrix condition guarantees the convergence of the

algebraic multigrid solver [15] when it is applied to solve the linear system of equations.

When the coefficient b is a piecewise constant, we propose a fast solver by transforming the original

problem (1) to a Poisson equation with an unknown jump in the normal derivative across the interface C.
We use a GMRES method to determine the unknown jump so that the original jump in the flux is

satisfied and thus the solution to the Poisson equation is also the solution to the original problem (1).

There are several advantages of this approach: (1) the computed solution is second-order accurate in the
infinity norm; (2) the number of iterations in the GMRES method is almost independent of the mesh

sizes; (3) the computed normal derivatives are observed to be second-order accurate as well; (4) with

slight changes, the methods can be, and have been applied to Helmholtz/Poisson equations defined on

irregular domains.

We also present an application of the second method to an electrical impedance tomography

problem in identifying an unknown interface in a 3D domain. The inverse problem is solved iteratively

by coupling the level set method [14] with the fast Poisson solver on irregular domains developed in

this paper.
The paper is organized as the following. In Section 2, we introduce the interface relations of the problem

which will be used in the derivation of our methods. The computational frame is established in Section 3.

We propose the maximum principle preserving scheme for general coefficient in Section 4 and provide some

numerical examples. The fast Poisson solver for piecewise constant coefficient is proposed in Section 5 with

some numerical examples. In Section 6, we present an application to an inverse problem of shape identi-

fication. We conclude the paper in Section 7.

2. Theoretical aspects

We hope to develop accurate finite difference methods based on Cartesian grids. To this end, we present

a complete set of interface relations up to the second-order derivatives by differentiating the jumps along

the interface C, and making use of the original partial differential equation (PDE) (1). Since the flux jump

condition ½bun� is given in the normal direction of the interface, it is convenient to use a local coordinate

system in the normal and tangential directions.

216 S. Deng et al. / Journal of Computational Physics 184 (2003) 215–243

2.1. A local coordinate system

Given a point ðx�; y�; z�Þ on the interface C, let n be the normal direction of C, g and s be two orthogonal

directions tangential to C. Then the local coordinates transformation is given by

n ¼ ðx � x�Þaxn þ ðy � y�Þayn þ ðz � z�Þ azn;

g ¼ ðx � x�Þaxg þ ðy � y�Þayg þ ðz � z�Þazg;

s ¼ ðx � x�Þaxs þ ðy � y�Þays þ ðz � z�Þazs;

ð3Þ

where axn represents the directional cosine between x-axis and n, and so forth, see Fig. 1 for an illustration.

The three-dimensional coordinates transformation above can also be written in a matrix–vector form.

Define the local transformation matrix as

A ¼
axn ayn azn

axg ayg azg

axs ays azs

0
@

1
A; ð4Þ

then we have

n
g
s

0
@

1
A ¼ A

x � x�

y � y�

z � z�

0
@

1
A: ð5Þ

Also, for any differentiable function pðx; y; zÞ, we have

�ppn

�ppg

�pps

0
@

1
A ¼ A

px

py

pz

0
@

1
A; ð6Þ

where �ppðn; g; sÞ ¼ pðx; y; zÞ, and

�ppnn �ppng �ppns

�ppgn �ppgg �ppgs

�ppsn �ppsg �ppss

0
B@

1
CA ¼ A

pxx pxy pxz

pyx pyy pyz

pzx pzy pzz

0
@

1
AAT; ð7Þ

Fig. 1. A sketch of a three-dimensional local coordinates transformation.

S. Deng et al. / Journal of Computational Physics 184 (2003) 215–243 217

where AT is the transpose of A. It is easy to verify that ATA ¼ I , where I is the identity matrix. For two-

dimensional problems, the matrix–vector relations under the local coordinates can be found in [3]. Note

that under the local coordinates transformation (3), the PDE (1) is invariant. Therefore, we will drop the

bars for simplicity.

2.2. Interface relations

We use the superscripts + or) to denote the limiting values of a function from Xþ side and X� side of the

interface, respectively. Under the local coordinates, the limiting differential equation from the negative side,

for example, can be written as

b�ðu�nn þ u�gg þ u�ssÞ þ b�
n u�n þ b�

g u�g þ b�
s u�s þ k�u� � f � ¼ 0: ð8Þ

Also under the local n–g–s coordinate system, the interface can be expressed as

n ¼ vðg; sÞ; with vð0; 0Þ ¼ 0; vgð0; 0Þ ¼ 0; vsð0; 0Þ ¼ 0: ð9Þ

We will use the jump condition (2) and the original differential equation to get more interface relations in
this section.

Let us first differentiate the first jump condition ½u� ¼ w in (2) with respect to g and s, respectively,
to get

½un�vg þ ½ug� ¼ wg; ð10Þ

½un�vs þ ½us� ¼ ws: ð11Þ

Differentiating (10) with respect to s yields

vg

o

os
½un� þ vgs½un� þ ½ugn�vs þ ½ugs� ¼ wgs: ð12Þ

Differentiating (10) with respect to g and differentiating (11) with respect to s, respectively, we

obtain

vg

o

og
½un� þ vgg½un� þ vg½ugn� þ ½ugg� ¼ wgg; ð13Þ

vs

o

os
½un� þ vss½un� þ vs½usn� þ ½uss� ¼ wss: ð14Þ

Before differentiating the jump of the normal derivative ½bun� ¼ v in (2), we first express the unit normal
vector of the interface C as

n ¼
ð1;�vg;�vsÞffi
1þ v2

g þ v2
s

q : ð15Þ

So the second interface condition ½bun� ¼ v in (2) can be written as

½bðun � ugvg � usvsÞ� ¼ vðg; sÞ
ffi
1þ v2

g þ v2
s

q
: ð16Þ

Differentiating this with respect to g gives

218 S. Deng et al. / Journal of Computational Physics 184 (2003) 215–243

½ðbnvg þ bgÞðun � ugvg � usvsÞ� þ b unnvg

	

þ ung � vg

o

og
ug � vs

o

og
us � ugvgg � usvgs

��

¼ vg

ffi
1þ v2

g þ v2
s

q
þ v

vgvggffi
1þ v2

g þ v2
s

q : ð17Þ

Similarly, differentiating (16) with respect to s gives

½ðbnvs þ bsÞðun � ugvg � usvsÞ� þ b unnvs

	

þ uns � vg

o

os
ug � vs

o

os
us � ugvgs � usvss

��

¼ vs

ffi
1þ v2

g þ v2
s

q
þ v

vs vssffi
1þ v2

g þ v2
s

q : ð18Þ

At the origin, vgð0; 0Þ ¼ vsð0; 0Þ ¼ 0, and from (10) to (18) we can conclude that

uþ ¼ u� þ w;

uþn ¼ b�

bþ u�n þ v
bþ ;

uþg ¼ u�g þ wg;

uþs ¼ u�s þ ws;

uþgs ¼ u�gs þ ðu�n � uþn Þvgs þ wgs;

uþgg ¼ u�gg þ ðu�n � uþn Þvgg þ wgg; ð19Þ
uþss ¼ u�ss þ ðu�n � uþn Þvss þ wss;

uþng ¼
b�

bþ u�ng þ uþg

	
� b�

bþ u�g

�
vgg þ uþs

	
� b�

bþ u�s

�
vgs þ

b�
g

bþ u�n �
bþ

g

bþ uþn þ vg

bþ ;

uþns ¼
b�

bþ u�ns þ uþg

	
� b�

bþ u�g

�
vgs þ uþs

	
� b�

bþ u�s

�
vss þ

b�
s

bþ u�n � bþ
s

bþ uþn þ vs

bþ :

To get the relation for uþnn we need to use the differential equation (1) itself from which we can write

½bðunn þ ugg þ ussÞ þ bnun þ bgug þ bsus þ ku� ¼ ½f �: ð20Þ

Notice that

k�u� � kþuþ ¼ k�u� � kþu� þ kþu� � kþuþ ¼ �½k�u� � kþ½u�: ð21Þ

Rearranging Eq. (20) and using Eq. (21) above we get

bþðuþnn þ uþgg þ uþssÞ þ bþ
n uþn þ bþ

g uþg þ bþ
s uþs ¼ b�ðu�nn þ u�gg þ u�ssÞ þ b�

n u�n þ b�
g u�g þ b�

s u�
s þ ½f �

þ k�u� � kþuþ: ð22Þ

Plugging the sixth and seventh equations of (19) in (22) and collecting terms finally we have

uþnn ¼
b�

bþ u�nn þ
b�

bþ

	
� 1

�
u�gg þ

b�

bþ

	
� 1

�
u�ss þ uþn vgg

þ vss �

bþ
n

bþ

!
� u�n vgg

þ vss �

b�
n

bþ

!

þ 1

bþ ðb�
g u�g � bþ

g uþg Þ þ
1

bþ ðb�
s u�s � bþ

s uþs Þ �
1

bþ ð½k�u� þ kþ½u�Þ þ ½f �
bþ � wgg � wss: ð23Þ

S. Deng et al. / Journal of Computational Physics 184 (2003) 215–243 219

3. The computational frame

For simplicity, we assume that the domain X is a solid cube, say ½a1; b1� ½a2; b2� ½a3; b3�. We wish to

solve the problem using a finite difference method and a uniform Cartesian grid with

xi ¼ a1 þ ih; yj ¼ a2 þ jh; zk ¼ a3 þ kh; 06 i6 L; 06 j6M ; 06 k6N :

We also assume that h ¼ ðb1 � a1Þ=L ¼ ðb2 � a2Þ=M ¼ ðb3 � a3Þ=N to make many expressions simple.

We use the zero level surface of a three-dimensional function uðx; y; zÞ to express the interface,

that is,

uðx; y; zÞ < 0 if ðx; y; zÞ 2 X�;

uðx; y; zÞ ¼ 0 if ðx; y; zÞ 2 C;

uðx; y; zÞ > 0 if ðx; y; zÞ 2 Xþ:

ð24Þ

We assume that the level set function is Lipschitz continuous and uðx; y; zÞ 2 C2 in the small neighborhood

of the zero level set u ¼ 0 that represents the interface C. At a grid point xijk, let umin
ijk and umax

ijk be the

minimum and maximum values of the level set function u at ui�1;j;k, ui;j�1;k, ui;j;k�1, and uijk. We define xijk

as an irregular grid point if

umax
ijk umin

ijk 6 0: ð25Þ

Otherwise xijk is called a regular grid point.

3.1. Setting-up a local coordinate system using the level set function

Given a point X� ¼ ðx�; y�; z�Þ on the interface, we choose the n direction as the normal direction of the

interface

n ¼ ru
jruj ¼ ðux; uy ; uzÞ

T
=
ffi
u2

x þ u2
y þ u2

z

q
;

where the unit normal direction is evaluated at ðx�; y�; z�Þ. The g- and s-axes are in the tangent plane passing

through ðx�; y�; z�Þ. We choose the first tangential direction as

g ¼ ðuy ; �ux; 0ÞT=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

x þ u2
y

q
if u2

x þ u2
y 6¼ 0. Otherwise, we choose

g ¼ ðuz; 0; �uxÞ
T
=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

x þ u2
z

q
:

The corresponding second tangential direction is

s ¼ s

jsj ; where s ¼ ðuxuz; uyuz; �u2
x � u2

yÞ
T

if u2
x þ u2

y 6¼ 0. Otherwise, we choose

s ¼ t

jtj ; where t ¼ ð�uxuy ; u2
x þ u2

z ; �uyuzÞ
T
:

220 S. Deng et al. / Journal of Computational Physics 184 (2003) 215–243

3.2. Computing the projections

For each irregular grid point x ¼ ðxi; yj; zkÞ, we select a point X� ¼ ðx�i ; y�j ; z�kÞ on the interface. Although

not necessarily, we take this point as the projection of ðxi; yj; zkÞ on the interface. The projection X� is the

closest point on the interface to the grid point ðxi; yj; zkÞ with uðX�Þ ¼ 0. In practice, we can only compute

the projection approximately. Since the interface C is represented as the zero level surface u ¼ 0, and the

level set function u has the fastest rate of increase/decrease in the normal direction of the level surfaces, we

write the projection as

X� ¼ xþ ap;

where p ¼ ru=jruj, and a � h is an approximation of the signed distance from the grid point x to the
projection X�. Neglecting Oða3Þ and higher-order terms in the Taylor expansion of uðX�Þ ¼ 0, we get a

quadratic equation for a

uðxÞ þ jruja þ 1

2
ðpTHeðuÞpÞa2 ¼ 0;

where HeðuÞ is the Hessian matrix of u

HeðuÞ ¼
uxx uxy uxz

uyx uyy uyz

uzx uzy uzz

0
@

1
A:

The values of u, ux, uy , uz, uxx, uxy , uxz, uyy , uyz, and uzz are all computed at the grid point

x ¼ ðxi; yj; zkÞ using the standard central finite difference scheme. Since the truncation error of the above

quadratic expansion is of Oða3Þ � Oðh3Þ, the central finite difference schemes are second-order accurate,

and the quantities ux, uy , and uz appear in the linear and quadratic terms of a and the second-order

derivatives uxx; . . . ;uzz appear in the quadratic term of a, the computed projections are third-order

accurate.

4. The maximum principle preserving scheme

We now derive a finite difference equation of the form

Xns

m

cmuiþim;jþjm;kþkm þ kijkuijk ¼ fijk þ Cijk ð26Þ

at every grid point ðxi; yj; zkÞ to approximate (1), where im; jm; km take values from 0;�1;�2; . . . ; meaning

that the summation is taken over the neighboring grid points centered at ðxi; yj; zkÞ. Note that we have

omitted the dependency of m on i, j, and k, for simplicity. At a regular grid point, we use the standard seven
point finite difference scheme

ci�1;jk ¼
bi�1=2;j;k

h2
; ciþ1;jk ¼

biþ1=2;j;k

h2
; ci;j�1;k ¼

bi;j�1=2;k

h2
;

ci;jþ1;k ¼
bi;jþ1=2;k

h2
; ci;j;k�1 ¼

bi;j;k�1=2

h2
; ci;j;kþ1 ¼

bi;j;kþ1=2

h2
;

ci;j;k ¼ �ðci�1;jk þ ciþ1;jk þ ci;j�1;k þ ci;jþ1;k þ ci;j;k�1 þ ci;j;kþ1Þ Cijk ¼ 0;

ð27Þ

where bi�1=2;j;k ¼ bðxi � h=2; yj; zkÞ and so forth. The local truncation errors are Oðh2Þ.

S. Deng et al. / Journal of Computational Physics 184 (2003) 215–243 221

4.1. Setting-up the finite difference equations at irregular grid points

At irregular grid points, we use the method of un-determined coefficients to find the coefficients of the

finite difference scheme. Let X� be the projection of ðxi; yj; zkÞ on the interface. Using the Taylor expansion

from both sides of the interface at X�, we can write

Xns

m

cmuðxiþim ; yjþjm ; zkþkmÞ þ kijkuðxi; yj; zkÞ ¼
Xns

m

cm u�
	

þ u�n nm þ u�g gm þ u�s sm þ n2
m

2
u�nn þ

g2
m

2
u�gg

þ s2m
2

u�ss þ nmgmu
�
ng þ nmsmu�ns þ gmsmu�gs þOðh3Þ

�
þ kijkðuijk þOðhÞÞ; ð28Þ

where the function values and the derivatives are defined as the limiting value at X� from the side where the

grid point ði þ im; j þ jm; k þ kmÞ is in. Using the interface relations (19) and (23), the expression above can

be written as

Xns

m

cmuðxiþim ; yjþjm ; zkþkmÞ þ kijkuðxi; yj; zkÞ � a1u� þ a2uþ þ a3u�n þ a4uþn þ a5u�g þ a6uþg þ a7u�s

þ a8uþs þ a9u�nn þ a10uþnn þ a11u�
gg þ a12uþgg þ a13u�ss

þ a14uþss þ a15u�ng þ a16uþ
ng þ a17u�ns þ a18uþns þ a19u�gs

þ a20uþgs þ k�u�; ð29Þ

with the higher-order terms being neglected, where the coefficients ai�s depend only on the position of the

stencil relative to the interface. They are independent of the functions u; b; k, and f . If we define the index
sets Kþ and K� by

K� ¼ fm : ðnm; gm; smÞ is on the� side of Cg; ð30Þ

then the ai�s with odd subscript are given by

a1 ¼
X
m2K�

cm; a3 ¼
X
m2K�

cmnm; a5 ¼
X
m2K�

cmgm; a7 ¼
X
m2K�

cmsm;

a9 ¼
1

2

X
m2K�

cmn2
m; a11 ¼

1

2

X
m2K�

cmg2
m; a13 ¼

1

2

X
m2K�

cms2m;

a15 ¼
X
m2K�

cmnmgm; a17 ¼
X
m2K�

cmnmsm; a19 ¼
X
m2K�

cmgmsm:

ð31Þ

The ai�s with even subscript are exactly the same as above except the summation is from the subset Kþ.

Substituting the interface relations (19) and (23), we express all the quantities from the positive side in terms

of the quantities from the negative side. Thus the right-hand side of (29) is represented by the linear
combination of the quantities from the negative side. After some manipulations, (29) is arranged as follows:

Xns

m

cmuðxiþim ; yjþjm ; zkþkmÞ þ kijkuðxi; yj; zkÞ ¼ ð Þu� þ ð Þu�n þ ð Þu�g þ ð Þu�s þ ð Þu�nn þ ð Þu�gg

þ ð Þu�ss þ ð Þu�ng þ ð Þu�ns þ ð Þu�gs þ Cijk: ð32Þ

The contents in the parentheses are the corresponding terms in the left-hand side of (33)–(42). The last term

Cijk is a linear function of the jumps in the solution and the flux and is given in (43). We want the finite

222 S. Deng et al. / Journal of Computational Physics 184 (2003) 215–243

difference scheme to be second-order accurate to the differential equation. Therefore at X� we match (29)

with the PDE (8) from the negative side, i.e., we equate (32) to b�ðu�
nn þ u�gg þ u�ssÞ þ b�

n u�
n þ b�

g u�g þ b�
s u�s .

Hence, we obtain the linear system of equations for the coefficients ci�s below:

a1 � a10
½k�
bþ þ a2 ¼ 0; ð33Þ

a3 � a10 vgg

	
þ vss �

b�
n

bþ

�
þ a12vgg þ a14vss þ a16

b�
g

bþ þ a18
b�

s

bþ þ a20vgs

þ b�

bþ a4

(
þ a10 vgg

þ vss �

bþ
n

bþ

!
� a12vgg � a14vss � a16

bþ
g

bþ � a18
bþ

s

bþ � a20vgs

)
¼ b�

n ; ð34Þ

a5 þ a10
b�

g

bþ � a16
b�

bþ vgg � a18
b�

bþ vgs þ a6 � a10
bþ

g

bþ þ a16vgg þ a18vgs ¼ b�
g ; ð35Þ

a7 þ a10
b�

s

bþ � a16
b�

bþ vgs � a18
b�

bþ vss þ a8 � a10
bþ

s

bþ þ a16vgs þ a18vss ¼ b�
s ; ð36Þ

a9 þ a10
b�

bþ ¼ b�; ð37Þ

a11 þ a12 þ a10
b�

bþ

	
� 1

�
¼ b�; ð38Þ

a13 þ a14 þ a10
b�

bþ

	
� 1

�
¼ b�; ð39Þ

a15 þ a16
b�

bþ ¼ 0; ð40Þ

a17 þ a18
b�

bþ ¼ 0; ð41Þ

a19 þ a20 ¼ 0: ð42Þ

If we can solve this linear system of equations to get ci�s, then by collecting the remaining terms in (29), we

can determine the correction term which is given by

Cijk ¼ a10
½f �
bþ

	
� kþw

bþ � wgg � wss

�
þ a12wgg þ a14wss þ a16

vg

bþ þ a18
vs

bþ þ a20wgs þ a2w

þ 1

bþ a4

(
þ a10 vgg

þ vss �

bþ
n

bþ

!
� a12vgg � a14vss � a16

bþ
g

bþ � a18
bþ

s

bþ � a20vgs

)
v

þ a6

� a10

bþ
g

bþ þ a16vgg þ a18vgs

!
wg þ a8

	
� a10

bþ
s

bþ þ a16vgs þ a18vss

�
ws: ð43Þ

S. Deng et al. / Journal of Computational Physics 184 (2003) 215–243 223

4.2. Computing the principal curvatures using the level set function

In order to determine the matrix entries of the linear system of equations (33)–(42) for the coefficients

ci�s, we need to compute the second-order tangential derivatives vgg, vss, vgs of v at X�. We call these

quantities principal curvatures. These quantities are computed from the level set function. Since

uðvðg; sÞ; g; sÞ ¼ 0, it follows from the implicit function theory that

ug þ unvg ¼ 0; ð44Þ

us þ unvs ¼ 0 ð45Þ

and

ugg þ ugnvg þ ðung þ unnvgÞvg þ unvgg ¼ 0;

ugs þ ugnvs þ ðuns þ unnvsÞvg þ unvgs ¼ 0;

uss þ usnvs þ ðuns þ unnvsÞvs þ unvss ¼ 0:

So, we have

vgg ¼ �ugg=un;

vss ¼ �uss=un;

vgs ¼ �ugs=un;

ð46Þ

where ðun;ug;usÞ and ðunn;ugg;ussÞ are given in (6) and (7), respectively. Our procedure for evaluating the
principal curvatures includes:

• compute the first and second derivatives of u at the surrounding grid points using the standard central

difference scheme;
• use the bi-linear interpolation to compute the first- and second-order derivatives ux;uy ; . . . ;uzz in the

original coordinates at the projection point X�;

• use the formulae (6) and (7) to get the first- and second-order derivatives un;ug;us; . . . ;uss in the local

coordinate system;

• use the formula (46) to compute the principal curvatures vgg, vgs, and vss.

The bi-linear interpolation uses eight grid points. Given any point ðx�; y�; z�Þ on the interface, we can find

a cube containing the point with the eight vertices ðx0; y0; z0Þ, ðx0; y0; z1Þ, ðx0; y1; z0Þ, ðx0; y1; z1Þ, ðx1; y0; z0Þ,
ðx1; y0; z1Þ, ðx1; y1; z0Þ, and ðx1; y1; z1Þ. Let Qijk be the function values at the eight vertices. The eight point bi-

linear interpolation is defined as

Qðx�; y�; z�Þ ¼ 1

8

X1
i;j;k¼0

Qijk�xxi�yyj�zzk; ð47Þ

where

�xxi ¼ 1þ ð2i� 1Þ 2ðx � x0Þ
h

	
� 1

�
; �yyj ¼ 1þ ð2j � 1Þ 2ðy � y0Þ

h

	
� 1

�
;

�zzk ¼ 1þ ð2k � 1Þ 2ðz � z0Þ
h

	
� 1

�
:

ð48Þ

224 S. Deng et al. / Journal of Computational Physics 184 (2003) 215–243

4.3. Computing the tangential derivatives of interface quantities

In the evaluation of the correction terms Cijk, we need to compute the tangential derivatives such as wg,

ws, wgg, wss, wgs, vg, and vs, where w and v are only defined along the interface C. They are computed using

the least squares interpolation.

Let g be a function defined on the interface and therefore we know its values at the projections X�
p. We

explain below how to compute its tangential derivatives at a particular projection X� using the projections

X�
p in the neighborhood of X�.

In the neighborhood of X�, the interface quantity g can be written as gðg; sÞ using the local coordinates.

The least squares interpolation for gg, gs, and ggg at X�, for example, can be written as

ggðX�Þ ¼
X

jX��X�
p j6R�

apgp; gsðX�Þ ¼
X

jX��X�
p j6R�

kpgp; gggðX�Þ ¼
X

jX��X�
p j6R�

rpgp; ð49Þ

where gp ¼ gðX�
pÞ are the function values at the projections X�

p, R� is a pre-chosen parameter between 5:1h
and 6:1h. We should choose R� such that at least 10 points are involved. We explain how to compute the

coefficients ap for ggðX�Þ as an illustration. It is based on the Taylor expansion and the singular value

decomposition (SVD) to solve an under-determined system of equations.

Using the Taylor expansion at X�, we have

X
jX�

p�X�j6R�

apgp ¼
X

jX�
p�X�j6R�

ap g�
	

þrg� � ðX�
p � X�Þ þ 1

2
ðX�

p � X�ÞTHðg�ÞðX�
p � X�Þ þ � � �

�

¼ ð Þg� þ ð Þg�
g þ ð Þg�

s þ ð Þg�
gg þ ð Þg�

gs þ ð Þg�
ss þ h:o:t;

where HðgÞ is the Hessian matrix of g in terms of the variables g and s under the local coordinates n–g–s
centered at the projection X�, h.o.t stands for the high-order terms of jX�

p � X�j, and the contents in the

parentheses are the corresponding right-hand side in the system of equations below. Using the method of

the under-determined coefficient, we setX
p

ap ¼ 0;
X

p

apgp ¼ 1;
X

p

apsp ¼ 0;

X
p

apg
2
p ¼ 0;

X
p

aps
2
p ¼ 0;

X
p

apgpsp ¼ 0;
ð50Þ

where ðgp; spÞ�s are the coordinates of the projections X�
p on the interface in the parametric form

n ¼ vðg; sÞ centered at X�. The under-determined system is solved by the SVD subroutine form LAPACK/

LINPACK which is available from the Netlib. The other tangential derivatives can be computed in the

same way with different right-hand side. Since the coefficients matrix is the same, we just need to compute

the SVD once.

4.4. An optimization approach

After the preparations from previous sections, we are ready to determine the coefficients cm�s and ns in

the finite difference equation in (26) for all irregular grid points. It seems that we can take ns ¼ 10 because

there are 10 Eqs. (33)–(42). The problem is that we cannot guarantee that the system (33)–(42) has a so-

lution and the stability of the resulting system of the finite difference equations.
We propose the maximum principle preserving scheme by choosing ns > 10 and adding the sign

constraints

S. Deng et al. / Journal of Computational Physics 184 (2003) 215–243 225

cm < 0 if ðim; jm; kmÞ ¼ ð0; 0; 0Þ;
cm P 0 if ðim; jm; kmÞ 6¼ ð0; 0; 0Þ;

ð51Þ

in addition to the linear system of equations (33)–(42). The sign constraints will guarantee the coefficient

matrix of the system of the finite difference equations be an M-matrix.

To solve the linear system of equations (33)–(42) with the inequality constraints (51), we construct a

quadratic optimization problem

min
c

1

2

X
m

ðcm � dmÞ2; ð52Þ

s.t.

Bc ¼ b; the system of ð33Þ–ð42Þ;
cm < 0 if ðim; jm; kmÞ ¼ ð0; 0; 0Þ;
cm P 0 if ðim; jm; kmÞ 6¼ ð0; 0; 0Þ;

ð53Þ

where c ¼ ðc1; c2; . . . ; cns
ÞT is the vector composed of the coefficients of the finite difference scheme and

Bc ¼ b denotes the equality constraints specified by (33)–(42). We also want to choose cm�s in such a way

that the finite difference scheme (26) reduces to the standard central finite difference scheme if there is no

interface or the coefficient b of the PDE is continuous across the interface. This can be done by

choosing

dm ¼
biþim=2;jþjm=2;kþkm=2

h2
if ðim; jm; kmÞ is one of the six neighbors of ð0; 0; 0Þ;

d0 ¼ � 1

h2

X
m;m 6¼0

biþim=2;jþjm=2;kþkm=2; ð54Þ

dm ¼ 0; otherwise;

where the summation is over the six neighbors of the grid point ðxi; yj; zkÞ and bi�1=2;j;k ¼ bðxi � h=2; yj; zkÞ
and so forth.

There are several commercial and educational software packages that are designed to solve constrained

quadratic optimization problems, such as QP in Matlab and QL by Schittkowski [16].

What the minimum ns should be that can guarantee the existence of the solution to the optimization

problem is still an open theoretical problem. In our implementation, we take all the grid points in the cube

centered at ðxi; yj; zkÞ, that is, ns ¼ 27. We have not experienced any numerical failure for our testing

problems. In [11], the authors numerically showed the existence of the solution to the optimization problem

in two space dimensions. We believe that the conclusions are also true in three dimensions.

If the optimization problem has a solution at all irregular grid points, then it is shown in [11] that the
solution to the finite difference scheme has second-order accuracy globally in the infinity norm. We omit the

proof here since it is essentially the same as in two space dimensions.

In case that the optimization solver fails to return a feasible solution at an irregular grid point, we can

switch to a lower-order scheme such as the ghost fluid method [12] or the standard central finite difference

scheme. Since such points are few, if there are any, the global accuracy will not be affected.

We summarize our algorithm for the elliptic interface problem with variable but discontinuous coeffi-

cient below.

• Set-up a Cartesian grid.

• Label the grid points as regular, irregular.

• Find the projections of irregular grid points on the interface as described in Section 3.2.

226 S. Deng et al. / Journal of Computational Physics 184 (2003) 215–243

• At each irregular grid point, calculate the local coordinates ðnm; gm; smÞ for 27 neighboring grid points.

Calculate the matrix B and vectors b from the system (33)–(42) and di from (54). Solve the quadratic

programming (52) and (53) for cm�s and then compute the correction term Cijk using (43).

• Use the formula (27) as the finite difference scheme at regular grid points.
• Form the system of the finite difference equations (26).

• Solve the system of the finite difference equations (26) to get an approximate solution to the PDE.

4.5. An algebraic multigrid solver

If the coefficient b not only has a jump across the interface, but also is a function of location ðx; y; zÞ,
there are almost no fast elliptic solvers that can be used to solve the linear system of equations obtained

from our maximum principle preserving scheme. The Gauss–Seidel or SOR method is too slow in con-

vergence. We use the algebraic multigrid method (AMG) developed by the German National Research

Center for Information Technology (GMD) which is available on the Internet, see also [15]. The AMG has

been shown to be a robust and efficient solver for a linear system of equations Qu ¼ F with certain

properties. The AMG is guaranteed to converge if the coefficient matrix Q satisfies one of the following

conditions:

• Q is positive/negative definite or semi-positive/negative definite with ROWSUM ¼ 0 for each row, where

ROWSUM denotes the sum of the entries in each row.

• Q is ‘‘essentially’’ positive type, i.e.,
� The diagonal entries of Q must be positive/negative.

� Most of the off-diagonal entries of Q are non-positive/non-negative.

� For each row, the ROWSUM should be non-negative/non-positive.

The linear system of equations derived from the maximum principle preserving scheme is ‘‘essentially’’
negative definite matrix (an M-matrix) and the algebraic multigrid solver can be applied. Our numerical

experiments showed that the AMG method generally converged faster than the SOR method. The speed-up

increases as the number of grid lines gets larger.

4.6. Numerical results for the maximum principle preserving scheme

We have done a number of numerical experiments which confirm second-order accuracy of the maxi-

mum principle preserving scheme. The numerical tests are done using Sun Ultra 10 workstations or the

CRAY T916 supercomputer at the North Carolina Supercomputing Center (NCSC). The computational

domain is ½�1; 1� ½�1; 1� ½�1; 1�. In all examples, L ¼ M ¼ N , and ns ¼ 27 (i.e., all 27 grid points in-

volved in the usual 27 point stencil) unless otherwise specified. The convergence tolerance for the algebraic

multigrid method is 10�5 for the test results presented here.1

Example 4.1. We present an example with a variable and discontinuous coefficient b. The interface is a

sphere x2 þ y2 þ z2 ¼ 1=4. The differential equation is

ðbuxÞx þ ðbuyÞy þ ðbuzÞz ¼ f ;

1 We have also tried smaller tolerance 10�8. The accuracy and the order of convergence remain almost the same except that the CPU

time for the linear solver increases slightly. With smaller tolerance, the computed solution gives better approximation to the linear

system of the finite difference equations, but not necessarily a better approximation to the original partial differential equation because

the local truncation errors are generally larger than the tolerance. We believe that 10�5 is a reasonable choice of the tolerance for our

test problems.

S. Deng et al. / Journal of Computational Physics 184 (2003) 215–243 227

where

bðx; y; zÞ ¼ r2 þ 1 if r < 1
2
;

b if r P 1
2
;

�

f ðx; y; zÞ ¼ 10r2 þ 6;

and b is a constant and r ¼
ffi
x2 þ y2 þ z2

p
. The Dirichlet boundary condition is determined from the exact

solution

uðx; y; zÞ ¼
r2 if r < 1

2
;

r4

2
þ r2

� �.
b � r4

0

2
þ r20

� �.
b þ r20 if r P 1

2
;

(
ð55Þ

where r0 ¼ 1=2.

It can be calculated that ½u� ¼ 0 and ½bun� ¼ 0 in this example. However, the normal derivative un is

discontinuous due to the discontinuity in the coefficient b.
The jump in the coefficient b depends on the choice of the constant b. We tested three different cases,

b ¼ 1, b ¼ 10 (small jump), and b ¼ 1000 (large jump). Table 1 shows the results of the grid refinement

analysis. The maximum relative error is defined as

kENk1 ¼ maxi;j;k juðxi; yj; zkÞ � uijkj
maxi;j;k juðxi; yj; zkÞj

; ð56Þ

where uijk is the computed approximation to the exact one uðxi; yj; zkÞ. We also display the ratio of two

successive errors

ratio ¼ kENk1
kE2Nk1

: ð57Þ

In Table 1, we see that the average ratio approaches number 4 indicating second-order accuracy of the

maximum principle preserving scheme.

Example 4.2. Now we present an example of multi-connected domain and discontinuous solution. The

level set function is

uðx; y; zÞ ¼ S1ðx; y; zÞS2ðx; y; zÞ;

where

S1ðx; y; zÞ ¼ ðx � 0:2Þ2 þ 2ðy � 0:2Þ2 þ z2 � 0:01;

S2ðx; y; zÞ ¼ 3ðx þ 0:2Þ2 þ ðy þ 0:2Þ2 þ z2 � 0:01:

Table 1

The grid refinement analysis for Example 4.1

L M N b ¼ 1 b ¼ 10 b ¼ 1000

kENk1 Ratio kENk1 Ratio kENk1 Ratio

26 26 26 1:247 10�3 1:525 10�3 3:485 10�3

52 52 52 3:979 10�4 3.134 5:240 10�4 2.910 1:111 10�3 3.137

104 104 104 9:592 10�5 4.148 1:010 10�4 5.188 1:605 10�4 6.922

228 S. Deng et al. / Journal of Computational Physics 184 (2003) 215–243

The interface is the zero level set of uðx; y; zÞ that satisfies uðx; y; zÞ ¼ 0. The coefficient b is piecewise

constant bþ in Xþ and b� in X�. The source term is

f ðx; y; zÞ ¼ 6b�exþ2yþz in X�;
�bþð4p2 sin 2px þ p2sinpy þ 16p2 sin 4pzÞ in Xþ:

�

The Dirichlet boundary condition is determined from the exact solution

uðx; y; zÞ ¼ exþ2yþz in X�;
sin 2px þ sin py þ sin 4pz in Xþ:

�
ð58Þ

The jump conditions are

½u� ¼ sin 2px þ sin py þ sin 4pz � exþ2yþz;

and

½bun�
½bug�
½bus�

0
@

1
A ¼ A

2pbþ cos 2px � b�exþ2yþz

pbþ cos py � 2b�exþ2yþz

4pbþ cos 4pz � b�exþ2yþz

0
@

1
A;

and A is the local coordinates transformation matrix defined in (4).

We tested two different cases, b� ¼ bþ ¼ 1, and b� ¼ 1; bþ ¼ 1000. Fig. 2 shows a slice of the computed

solution for the bigger jump case and Table 2 shows the results of the grid refinement analysis. Again

second-order accuracy is observed.

In Table 3, we show the comparison of the CPU time (in seconds) of the SOR method and the algebraic

multigrid solver for the maximum principle preserving scheme on Sun Ultra 10. We see the algebraic
multigrid solver is much faster than the SOR method when L, M , and N are large. For small problems, the

algebraic multigrid solver may be slower due to the set-up time in the algebraic multigrid solver. More

examples can be found in [5].

A natural concern about the maximum principle preserving scheme is the computational cost in dealing

with the interface, or irregular grid points. The cost includes indexing the grid points, finding the or-

Fig. 2. A slice of the computed solution uðx; y; 0Þ for Example 4.2. The parameters are: bþ ¼ 1000; b� ¼ 1 and L ¼ M ¼ N ¼ 104.

S. Deng et al. / Journal of Computational Physics 184 (2003) 215–243 229

thogonal projections, and solving the quadratic optimization problem at each irregular grid point. Note

that the extra time is always needed to deal with the interface no matter what a numerical method is used to

solve the interface problem.

Since the number of irregular grid points is one-order fewer than the number of regular grid points, the
computational cost in dealing with the irregular grid points is negligible if the spatial step size h is small

enough. In practice, for three-dimensional problems, the spatial step size h will be limited. The CPU time

spent on interface depends on the complexity of the interface, the linear solver used, and the number of grid

points ns in the finite difference stencil. In Table 4, we show the percentage of the CPU time spent on the

interface with ns ¼ 27. In Example 4.1, there are more irregular grid points than that in Example 4.2, so the

percentage of CPU time spent on the interface is larger. In either case, the percentage of CPU time de-

creases significantly as we decrease the spatial step size h.

4.7. A special case

When b and k are continuous but the solution and/or the normal derivative have jumps across the in-

terface, the maximum principle preserving method becomes the standard central finite difference scheme.
Furthermore if b is a constant, we have the following theorem.

Table 2

The grid refinement analysis for Example 4.2

L M N bþ ¼ 1; b� ¼ 1 bþ ¼ 1000; b� ¼ 1

kENk1 Ratio kENk1 Ratio

52 52 52 3:108 10�2 2:032 10�2

104 104 104 6:758 10�3 4.599 4:771 10�3 4.259

Table 3

Comparison of CPU time (in seconds) of the SOR method and the AMG method on Sun Ultra 10

L M N Example 4.1 ðb ¼ 107Þ Example 4.2 ðbþ ¼ 104; b� ¼ 1Þ

SOR AMG SOR AMG

20 20 20 0.21 1.57 0.06 0.83

40 40 40 27.51 25.56 29.62 13.89

80 80 80 1410.54 265.26 1464.57 265.84

Table 4

CPU percentage distribution for Examples 4.1 and 4.2

L M N Example 4.1 ðb ¼ 1000Þ Example 4.2 ðbþ ¼ 1000; b� ¼ 1Þ

nirreg Tpre Ttotal Percentage nirreg Tpre Ttotal Percentage

26 26 26 920 23.65 31.95 74.02 58 3.53 10.44 33.81

52 52 52 3528 92.50 172.79 53.53 218 5.95 95.53 6.23

104 104 104 14048 380.22 2196.31 17.31 870 36.74 1430.14 2.57

nirreg is the total number of irregular grid points, Tpre is the CPU time spent in dealing with irregular grid points, and Ttotal is the total

CPU time. The time unit is in second.

230 S. Deng et al. / Journal of Computational Physics 184 (2003) 215–243

Theorem 4.1. If bðx; y; zÞ is a constant b and k is continuous, then the solution of Eqs. (33)–(42) are

ci�1;jk ¼ ciþ1;jk ¼ ci;j�1;k ¼ ci;jþ1;k ¼ cij;k�1 ¼ cij;kþ1 ¼
b
h2

; cijk ¼ � 6b
h2

; ð59Þ

and all other coefficients ciþim;jþjm;kþkm ¼ 0. The solution above is also a solution to the constrained optimization
problem.

Proof.We only need to verify that these cijk �s satisfy the linear system of equations (33)–(42) at any irregular

grid point. Without loss of generality, we assume the irregular grid point ðxi; yj; zkÞ be the origin. The

continuity condition of k means ½k� ¼ 0, and a constant b means ½b� ¼ 0. We also have q ¼ b�=bþ ¼ 1,

bn ¼ bg ¼ bs ¼ 0, etc. Therefore, the linear system of equations (33)–(42) becomes

a1 þ a2 ¼ 0; a3 þ a4 ¼ 0;

a5 þ a6 ¼ 0; a7 þ a8 ¼ 0;

a9 þ a10 ¼ b; a11 þ a12 ¼ b;

a13 þ a14 ¼ b; a15 þ a16 ¼ 0;

a17 þ a18 ¼ 0; a19 þ a20 ¼ 0:

The first equation

a1 þ a2 ¼ 0; i:e:;
X
m

cm ¼ 0

is obviously true. Under the transformation (3), let the new coordinates corresponding to ð0; 0; 0Þ,
ð�h; 0; 0Þ, ðh; 0; 0Þ, ð0;�h; 0Þ, ð0; h; 0Þ, ð0; 0;�hÞ, and ð0; 0; hÞ be ðnm; gm; smÞ; m ¼ 1; . . . ; 7. Define

Ym ¼
nm

gm

sm

0
@

1
A; m ¼ 1; 2; . . . ; 7;

and

X1 ¼
�x�

�y�

�z�

0
B@

1
CA; X2 ¼

�h � x�

�y�

�z�

0
B@

1
CA; X3 ¼

h � x�

�y�

�z�

0
B@

1
CA; X4 ¼

�x�

�h � y�

�z�

0
B@

1
CA;

X5 ¼
�x�

h � y�

�z�

0
B@

1
CA; X6 ¼

�x�

�y�

�h � z�

0
B@

1
CA; X7 ¼

�x�

�y�

h � z�

0
B@

1
CA:

We can verify

Ym ¼ AXm; m ¼ 1; 2; . . . ; 7;

and

a3 þ a4
a5 þ a6
a7 þ a8

0
@

1
A ¼

P
m cmnmP
m cmgmP
m cmsm

0
@

1
A ¼

X
m

cmYm ¼
X
m

cmAXm

¼ b
h2

A
6x� � h � x� þ h � x� � x� � x� � x� � x�

6y� � y� � y� � h � y� þ h � y� � y� � y�

6z� � z� � z� � z� � z� � h � z� þ h � z�

0
@

1
A ¼

0

0

0

0
@

1
A:

S. Deng et al. / Journal of Computational Physics 184 (2003) 215–243 231

Therefore, the second to the fourth equations (34)–(36) are also satisfied. To prove the rest, we can easily

verify

X
m

cmXmX
T
m ¼

2b 0 0

0 2b 0

0 0 2b

0
@

1
A ¼ 2bI :

Therefore, we have

X
m

cm

2
YmY

T
m ¼ 1

2

X
m

cmAXmX
T
mA

T ¼ bI ;

since AAT ¼ I , where A is defined in (4). Furthermore, we have the following:

X
m

cm

2
YmY

T
m ¼

P
m

cm
2

n2
m

P
m

cm
2

nmgm

P
m

cm
2

nmsmP
m

cm
2

nmgm

P
m

cm
2

g2
m

P
m

cm
2

gmsmP
m

cm
2

nmsm
P

m
cm
2

gmsm
P

m
cm
2

s2m

0
@

1
A;

which implies that

a9 þ a10 ¼ a11 þ a12 ¼ a13 þ a14 ¼ b;

a15 þ a16 ¼ a17 þ a18 ¼ a19 þ a20 ¼ 0:

This concludes the proof. �

The result above tells us that for Poisson equations, the standard central finite difference scheme can be

applied directly with the right-hand side being modified by Cijk even if the solution and/or the normal

derivative have jumps. Fast Poisson solvers such as the one from the Fishpack [1] can be used to solve the

resulting linear system.

5. A fast Poisson solver for piecewise constant coefficient

In this section, we discuss a fast algorithm for solving the Poisson equation (1), (2) when b is piecewise

constant in the domain X and k � 0. Divided by the coefficient in each sub-domain of X, the original

problem can be written as

Du ¼ f
bþ if ðx; y; zÞ 2 Xþ;

Du ¼ f
b� if ðx; y; zÞ 2 X�;

ð60aÞ

½u� ¼ w; ½bun� ¼ v; ð60bÞ

Given BC on oX: ð60cÞ

The Poisson equation is only valid in the interior of the domain excluding the interface C. The Poisson

equation can be solved readilywith a fast 3DPoisson solver if we know the jump in the solution ½u� ¼ w and the

jump in the normal derivative ½un�. This is because the system of the finite difference equations (26) for uijk

reduces to the standard seven point discrete Poisson equation with modified right-hand side, see Section 4.7.

232 S. Deng et al. / Journal of Computational Physics 184 (2003) 215–243

However, the second jump condition for the original problem (1) is in the flux ½bun� ¼ v instead of ½un�. We

cannot divide b from the flux jump condition because b is discontinuous. In [10], a fast method for two-di-

mensional problems is proposed. In this section, we describe our algorithm for three-dimensional problems.

As described in [10], the idea is to augment the unknown ½un� ¼ g and equation ½bun� ¼ v to (60a). That

is, we determine an interface function gðs1; s2Þ in such a way that the solution uðgÞ to (60a) satisfies the jump

condition ½bunðgÞ� ¼ v. Since ½un� is only defined along the interface, it is one-dimensional lower than the

dimension of the solution u. We apply the GMRES method to solve the unknown jump g by eliminating u
from the augmented system. Numerically, we represent the unknown jump g only at certain projections X�

c

of the irregular grid points from a particular side of the interface, for example, the side where u � 0 to

avoid possibly clustered points. We call these projections X�
c control points where we will find the unknown

jump ½un� numerically.

5.1. Setting-up the system of equations for [un] and computing the residual

We select the projections from the u P 0 side as a set of control points X�
1;X

�
2; . . . ;X

�
Ncontr

, and the jump in

the normal derivative ½un� as G1;G2; . . . ;GNcontr
at the control points X�

c . Denote the resulting discrete linear

system of equations for G ¼ ½G1;G2; . . . ;GNcontr
�T as

SG ¼ �bb; ð61Þ
where S is an Ncontr by Ncontr matrix. The matrix–vector form above is the Schur complement system of the

augmented system

A B
E D

 �
U
G

 �
¼

�FF1

�FF2

 �
; ð62Þ

where the system of the first row in the block matrix is the system of finite difference equations of the

Poisson equation given ½u� ¼ w and ½un� ¼ G defined at the control points, while the second row is the flux

jump condition ½bunðgÞ� ¼ v in the discrete form. In our implementation, the Schur complement
S ¼ D � EA�1B and other matrices are never formed explicitly. Below, we outline our method to compute

the residual vector RðGÞ ¼ SG � �bb:

• Step 1: For a given vector G defined at control points X�
c , we use the least squares interpolation to get the

intermediate jump g of the normal derivative and their first-order derivatives along the interface at all
projections X�

p. The scheme is discussed in the next section.

• Step 2: Solve the Poisson equation for uijkðGÞ with given ½u� ¼ w and the interpolated ½un� ¼ g. This step
is done using a fast Poisson solver since only the right-hand side of (60a) needs to be modified by the

correction term Cijk determined from (43). The main computational cost in this step includes the time

to determine the correction terms and solve the Poisson equation.

• Step 3: Compute the residual vector

RðGÞ ¼ bþuþn ðgÞ � b�u�n ðgÞ � v ¼ SG � �bb; ð63Þ

which is simply the equation of the flux jump condition at the control points. The normal derivatives

uþn ðgÞ and u�n ðgÞ at the control points X�
c are computed by the least squares interpolation which will be

explained in Section 5.3.

Note that when we take ½u� ¼ w and ½un� ¼ 0, we have Rð0Þ ¼ ��bb, the right-hand side of the Schur

complement. We apply the GMRES method to solve RðGÞ ¼ �bb with initial guess g0ðX�
cÞ ¼ vðX�

cÞ. When the

convergence criteria is met, we not only have the jump in the normal derivatives of the both sides at the

control points, but also the solution to the original PDE (1).

S. Deng et al. / Journal of Computational Physics 184 (2003) 215–243 233

Below we outline the entire fast algorithm for 3D elliptic interface problems with piecewise constant

coefficient. Some implementation details can either be found in previous sections or will be explained

further later in this section.

Outline of the algorithm for Poisson equations with piecewise constant coefficient:

• Set-up a Cartesian grid.

• Label the grid points as regular, irregular.

• Find the projections for irregular grid points.

• Select a set of control points, for example, we choose the projection points from a particular side of the

interface as the control points.

• Let ½u� ¼ w, ½un� ¼ 0. Compute the residual of the Schur complement to get the right-hand side �bb.
• Set G0 ¼ v, call the GMRES method to solve the Schur complement. Once the convergence criteria is

met, the method returns an approximate solution UðGkfinalÞ, the normal derivative uþn and u�n correspon-
ding to the final step kfinal.

5.2. Computing the surface quantities of the jump [un] defined only at control points

In Section 4.3, we have discussed the least squares interpolation scheme to compute the surface

derivatives of an interface quantity, for example, wg, ws from w, the jump in the solution. The surface

derivatives are needed in computing the correction terms for the Poisson equation (60a). However, the

intermediate unknown vector G ¼ ½un� is only defined at the control points X�
c , which are the projections

of a particular side of the interface, say uP 0 in our choice. The least squares interpolation scheme

needs to be modified to use only the information from the control points but not all the projections.

Given G that are defined at the control points, the interpolation scheme for g, gg, gs at any projection

X� are

ggðX�Þ ¼
X

jX��X�
c j6R�

�aacGc; gsðX�Þ ¼
X

jX��X�
c j6R�

�kkcGc; gðX�Þ ¼
X

jX��X�
c j6R�

�rrcGc; ð64Þ

where Gc are the given values at the control points X�
c . The procedure to determine the coefficients then is

the same as described in Section 4.3.

5.3. Computing the normal derivatives of the solution uijk at projections

In the GMRES method, given a guess G, we need to carry out the matrix–vector multiplication. As

stated before, this comprises three steps: (1) extend G to all projections of irregular grid points to get gðX�
pÞ;

(2) solve the Poisson equation (60a) with ½u� ¼ w and ½un� ¼ g to get uðgÞ; (3) compute the residual

RðGÞ ¼ bþuþn ðgÞ � b�u�n ðgÞ � v at the control points. We have explained how to extend G and how to solve
the Poisson equation. We now explain how to calculate u�n at the control points based on the solution uijk.

The algorithm is based on the least squares interpolation and the given jump condition uþn � u�n ¼ g. We

explain the idea for computing u�n at a particular projection X�
c . Let

u�n ðX
�
cÞ �

X
ði;j;kÞ2N

cijk uijk � CðX�
cÞ; ð65Þ

where N denotes a set of the closest 50 grid points to the projection X�
c in the sphere jxijk � X�

c j6R�, and
CðX�

cÞ is a correction term which can be determined once cijk �s are computed. Note that the coefficients cijk �s
now have different meaning as the coefficients of the finite difference scheme that we used earlier. In our

numerical tests, we take R� ¼ 6:1h. The interpolation (65) is robust and depends on uijk continuously. Using

234 S. Deng et al. / Journal of Computational Physics 184 (2003) 215–243

the same idea presented in Section 4, we expand the true solution uðxijkÞ at X�
c from different sides of the

interface and then express the quantities from the positive side in terms of those from the negative side.

Have done this and made use of the formulae (19) and (23), we get, after collecting terms:

u�n ðX
�
cÞ ¼ ða1 þ a2Þu� þ ða3 þ a4Þu�

n þ ða5 þ a6Þu�g þ ða7 þ a8Þu�s þ ða9 þ a10Þu�nn þ ða11 þ a12Þu�gg

þ ða13 þ a14Þu�ss þ ða15 þ a16Þu�ng þ ða17 þ a18Þu�ns þ ða19 þ a20Þu�gs þ a2½u� þ a4½un�
þ a6½ug� þ a8½us� þ a10½unn� þ a12½ugg� þ a14½uss� þ a16½ung� þ a18½uns� þ a20½ugs� � CðX�

cÞ
þOðh3 max jcijkjÞ: ð66Þ

where the variables ai�s are defined in (31). Thus we determine cijk �s by setting

a3 þ a4 ¼ 1; a2i�1 þ a2i ¼ 0; i ¼ 1; 3; 4; . . . ; 10: ð67Þ

Again, the system is under-determined and in general, there are infinite number of solutions. We use the

SVD subroutine from LAPACK/LINPACK to solve the system. Once the coefficients cijk �s are determined,
the correction term CðX�

cÞ is then

CðX�
cÞ ¼ a2½u� þ a4½un� þ a6½ug� þ a8½us� þ a10½unn� þ a12½ugg� þ a14½uss�

þ a16½ung� þ a18½uns� þ a20½ugs�; ð68Þ

in continuous case. Computationally, it is

CðX�
cÞ ¼ a2w þ a4g þ a6wg þ a8ws þ a10 gðvgg

	
þ vssÞ þ

f
b

 �
� wgg � wss

�
þ a12ðwgg � gvggÞ

þ a14ðwss � gvssÞ þ a16ðwgvgg þ wsvgs þ ggÞ þ a18ðwgvgs þ wsvss þ gsÞ þ a20ðwgs � gvgsÞ: ð69Þ

The same procedure can be used to compute uþn ðX�
cÞ. The interpolation scheme with under-determined

system and the use of the SVD provide a stable and robust interpolation scheme with smooth error dis-

tributions.

5.4. The pre-conditioning strategy

Since the flux jump condition involves the normal derivative, some pre-conditioning techniques are

crucial to reduce the number of iterations. The pre-conditioning technique that we have implemented is as

follows. We use the method described in the previous section to compute one of u�n ðX
�
cÞ or uþn ðX

�
cÞ, and we

use equations

uþn ðX�
cÞ � u�n ðX�

cÞ ¼ GðX�
cÞ;

bþuþn ðX�
cÞ � b�u�n ðX�

cÞ ¼ vðX�
cÞ

to determine the other. Again, GðX�
cÞ is the intermediate jump of the normal derivative at a control point.

The formulas are

If bþ < b� : u�n ðX
�
cÞ ¼

vðX�
cÞ � bþGðX�

cÞ
bþ � b� ;

If bþ > b� : uþn ðX�
cÞ ¼

vðX�
cÞ � b�GðX�

cÞ
bþ � b� :

S. Deng et al. / Journal of Computational Physics 184 (2003) 215–243 235

Consequently, we have the pre-conditioned equation

If bþ < b� :
b�ðbþGðX�

cÞ � vðX�
cÞÞ

bþ � b� þ bþuþn ðX�
cÞ � vðX�

cÞ ¼ 0;

If bþ > b� :
bþðvðX�

cÞ � b�GðX�
cÞÞ

bþ � b� � b�u�n ðX�
cÞ � vðX�

cÞ ¼ 0:

In this way we obtain the better conditioned system with the matrix form I þ K, where K is a discretization

of the Neumann-to-Neumann map for the Poisson equation.

5.5. An application to Helmholtz/Poisson equations on irregular domains

The idea of the fast interface Poisson solver described in the previous section can be used with a little

modifications to solve three-dimensional Helmholtz/Poisson equations

uxx þ uyy þ uzz þ ku ¼ f ; ðx; y; zÞ 2 X;

qðu; unÞ ¼ 0; ðx; y; zÞ 2 oX
ð70Þ

defined on an irregular domain X (interior or exterior2), where qðu; unÞ is a prescribed boundary condition

which is a linear function of u and un along the boundary oX. We will demonstrate the idea for interior
problems.

We embed X into a cube R and extend the definition of the PDE and source term to the entire cube R

Du þ ku ¼ f if ðx; y; zÞ 2 X;
0 if ðx; y; zÞ 2 R � X;

8<
:

½u� ¼ g on oX;
½un� ¼ 0 on oX;
u ¼ 0 on oR;

or

½u� ¼ 0 on oX;
½un� ¼ g on oX;
u ¼ 0 on oR:

ð71Þ

Again, the solution u is a linear functional of g. We determine gðs1; s2Þ such that the solution uðgÞ satisfies
the boundary condition qðuðgÞ; unðgÞÞ ¼ 0. This can be solved using the GMRES iteration exactly as we

discussed in Section 5. The only difference is the way in computing the residual vector.

5.6. Numerical examples of piecewise constant coefficient and irregular domains

All the simulations in this section are done on Sun Ultra 10 workstations. First we show an example of

the interface problem with piecewise constant coefficient.

Example 5.1. The interface is a sphere x2 þ y2 þ z2 ¼ 1=4. The source term is

f ðx; y; zÞ ¼ 6 if r < 1
2
;

20r2 þ 1
r2 if r P 1

2
:

�
ð72Þ

Dirichlet boundary conditions and the jump conditions (2) are determined from the exact solution

uðx; y; zÞ ¼
r2

b� if r < 1
2
;

r4þlogð2rÞ
bþ

þ ð1
2
Þ2

b� � ð1
2
Þ4

bþ
if r P 1

2
:

(
ð73Þ

2 For exterior problems, we assume that the domain is a cube with holes.

236 S. Deng et al. / Journal of Computational Physics 184 (2003) 215–243

We have ½u� ¼ 0 and ½bun� ¼ 3=2, Note that the solution is continuous in this example, but the normal

derivative is not.

We tested three different cases, no jump, small jump, and large jump in b. Table 5 shows the results of
the grid refinement analysis. An average ratio of 4 confirms the second-order accuracy. In Table 6, we

listed the CPU time in seconds for the three cases on a Sun Ultra 10 computer. The second column Nirreg in

the table is the number of total irregular grid points; the second column Ncontr is the number of control

points; the fifth, seventh, and ninth columns are the number of iterations of the GMRES method, which is

also the number of calls to the 3D fast Poisson solvers. We see the numbers are almost independent of the

mesh sizes.

We now show two examples in solving Poisson equations on interior and exterior irregular domains,

respectively. The problems are not the interface problems and cannot be solved using the maximum
principle preserving scheme. More examples can be found in [5].

Example 5.2. In this example, the domain is the exterior of the ellipsoid x2 þ 2y2 þ z2 ¼ 1=4. The differ-
ential equation is

uxx þ uyy þ uzz ¼ �3 sin x cos y cos z:

The Dirichlet boundary condition is chosen from the following exact solution:

uðx; y; zÞ ¼ sin x cos y cos z:

Fig. 3(a) (outside of the ellipse) shows a slice of the computed solution: �uðx; y; 0Þ. The ellipsoid is em-

bedded into a unit cube ½�1; 1� ½�1; 1� ½�1; 1�. Table 7 shows the errors in the infinity norm and other

information. In the table, Nirreg and Ncontr are the number of the total irregular grid points and the number

of control points, respectively; Niter is the number of iterations of the GMRES method, or the number of

calls to the 3D fast Poisson solver. We see the number of iterations is independent of mesh size as in the case

of two space dimensions.

Table 5

The grid refinement analysis for Example 5.1 on a Sun Ultra 10 computer

L M N bþ ¼ 1 bþ ¼ 10 bþ ¼ 1000

kENk1 Ratio kENk1 Ratio kENk1 Ratio

26 26 26 3:931 10�4 6:635 10�4 3:598 10�5

52 52 52 9:732 10�5 4.039 1:816 10�4 3.654 9:787 10�6 3.676

104 104 104 2:351 10�5 4.140 4:198 10�5 4.326 2:266 10�6 4.319

The coefficient in X� is b� ¼ 1.

Table 6

CPU time (seconds) and the number of iterations for Example 5.1 on a Sun Ultra 10 computer

L M N Nirreg Ncontr bþ ¼ 1 bþ ¼ 10 bþ ¼ 1000

CPU Niter CPU Niter CPU Niter

26 26 26 920 506 52.127 1 75.602 13 89.737 19

52 52 52 3528 1828 210.789 1 318.671 13 405.130 21

104 104 104 14048 7180 917.517 1 1536.733 14 1987.950 24

The coefficient in X� is b� ¼ 1.

S. Deng et al. / Journal of Computational Physics 184 (2003) 215–243 237

Example 5.3. The differential equation is

uxx þ uyy þ uzz ¼ �3p2 sin px sin py cos pz

in the interior of ellipsoid 2x2 þ y2 þ z2 ¼ 1=4. The Dirichlet boundary condition is chosen from the fol-

lowing exact solution:

uðx; y; zÞ ¼ sin px sin py cos pz þ 1:

Again the domain is embedded into the unit cube. Fig. 3(b) (inside on the top) shows a slice of the
computed solution: uðx; y; 0Þ. Table 8 shows the errors in the infinity norm and other information.

Table 8

The grid refinement analysis for Example 5.3.

L M N Nirreg Ncontr CPU (s) Niter kENk1 Ratio

26 26 26 720 318 42.994 18 4:382 10�3

52 52 52 2888 1352 178.600 18 1:071 10�3 4.092

104 104 104 11520 5562 949.558 22 2:452 10�4 4.368

Fig. 3. (a) A slice of the computed solution for Example 5.2: �uðx; y; 0Þ. (b) A slice of the computed solution for Example 5.3.

L ¼ M ¼ N ¼ 104.

Table 7

The grid refinement analysis for Example 5.2.

L M N Nirreg Ncontr CPU (s) Niter kENk1 Ratio

26 26 26 720 402 43.347 18 6:464 10�3

52 52 52 2888 1512 196.011 20 7:328 10�4 8.821

104 104 104 11516 5861 930.597 19 7:416 10�5 9.822

238 S. Deng et al. / Journal of Computational Physics 184 (2003) 215–243

6. An application to an inverse problem of shape identification

In [6], we proposed a variational model and a numerical method for identifying an unknown shape in a

problem motivated by electrical tomography. In this section, we show some three-dimensional simulations

using the fast Poisson solver for exterior irregular domains.

The variational form of the problem is

min
C

JðCÞ ¼ 1

2

Z Z Z
X̂X
juðCÞ � uobj2 dx dy dz þ �

Z Z
C
1 dS; ð74Þ

where the given uob is the observed data in a small tube

X̂X ¼ fðx; y; zÞ;�16 x6 � 1þ d; 1� d6 x6 1;�16 y6 � 1þ d; 1� d6 y 6 1;�16 z6 � 1

þ d; 1� d6 z6 1g; ð75Þ

where d > 0 is a parameter, and � is a regularization parameter.

Given a domain X, a sub-set X̂X, and a three-dimensional function uob defined on X̂X, the problem is to find

the unknown surface(s) C (within X) that minimizes JðCÞ.
We use the zero level set of a function uðx; y; zÞ to express an admissible surface C

C ¼ fx 2 R3 : uðxÞ ¼ 0g:

Given an admissible surface C, the gradient (steepest ascent) direction of J at the surface C is given by

V ðxÞ ¼ �ru � rp þ �j on C; ð76Þ

where j is the mean curvature of the interface C and u 2 H 1
0 ðXþÞ satisfies

�Du ¼ 0 in Xþ;
u ¼ 0 on C;
un ¼ g on oX;

ð77Þ

and the adjoint function p 2 H 1ðXþÞ satisfies

�Dp ¼ ðu � uobÞvX̂X in Xþ;
p ¼ 0 on C;
pn ¼ 0 on oX:

ð78Þ

Here, vX̂X is the characteristic function of the domain X̂X, we refer the reader to [6] for the derivation.

Since we know the steepest descent direction, we can use the steepest descent and quasi-Newton method

to move an admissble C closer to its minima. We use the level set method as a tool to find the unknown

shape that minimizes JðCÞ by moving the surface along the steepest descent direction of JðCÞ through the

Hamilton–Jacobi equation

ut þ Vru ¼ 0 ð79Þ

with an artificial time variable t. The algorithm is outlined below.

6.1. Outline of the algorithm

• Select an initial level set function u whose zero level set C0 ¼ fðx; y; zÞ : uðx; y; zÞ ¼ 0g is within the do-
main X. Let C ¼ C0.

S. Deng et al. / Journal of Computational Physics 184 (2003) 215–243 239

• Solve the Laplace equation (77) in the exterior of C using the fast solver described in Section 5.5 to get

u ¼ uðCÞ.
• Compute the difference of the computed solution with the observed data ðuðCÞ � uobÞvX̂X.

• Check convergence. If kðuðCÞ � uobÞvX̂Xk6 �2, then stop, where �2 > 0 is a pre-chosen tolerance. Other-
wise, continue.

• Solve the Poisson equation (78) in the exterior of C using the fast solver described in Section 5.5 to get

p ¼ pðCÞ.
• Evaluate the normal velocity V using the least squares interpolation scheme, see Section 4.3, to

get

V ¼ �ru � rp þ �j on C; ð80Þ

where j is the mean curvature of the interface.

• Extend the normal velocity V to a computational tube juj6 d2, where d2 is the width of the tube.

• Update the level set function by solving the Hamilton–Jacobi equation ut þ V jruj ¼ 0.
• Reinitialize the interface.

• Let C be defined by the new level set function. Repeat the process if necessary.

Since the emphasis here is the application of our fast Poisson solver on irregular domains, we omit some
of the details due to the space limitation and refer the reader [6] for more details. The time step size is

chosen as

Dt ¼ min 10;
h

4 vmax

	 �
;

where vmax is the maximum magnitude of the velocity in the computational tube. Based on the CFL

condition for the level set equation, we could use Dt < h=vmax. However because the problem is non-linear,

we take a more conservative approach.

6.2. Numerical simulations of shape identification.

We performed some numerical experiments on Sun Ultra 10 workstations with a 60 60 60 grid. The

computational domain is scaled to the unit cube ½�1; 1� ½�1; 1� ½�1; 1�. As stated in [6] for two-

dimensional problems, the algorithm works well for single convex objects or multi-convex objects that are

far apart.

We present two examples in which we know the exact solutions. In the first one the exact shape is a

sphere x2 þ y2 þ z2 ¼ 0:32. In the second example, the exact shape is an ellipsoid x2 þ 3y2 þ z2 ¼ 0:32. We
started with a large sphere x2 þ y2 þ z2 ¼ 0:42 that surrounds the exact shape. The observed data are as-

sumed to have a noise

zijk ¼ uðC�Þijk þ �ddijk;

where C� denotes the ‘‘true’’ interface and �ddijk is chosen as uniformly distributed random noise.

In Fig. 4, we show the evolution process of our computation for the sphere case. The parameters are

� ¼ 0:001, the relative noise level �dd ¼ maxijk jdijkj=maxijk juijkj is 17%. The stopping criteria is jJ j6 10�5. In

Fig. 5, we show the evolution process of our computation using the slices of the computed shape for the
ellipsoid case. We show the results with � ¼ 0:001. The relative noise level once again is 17%. In both cases,

we get satisfactory results. The small difference in the final shape is mainly due to the noise in the observed

data.

240 S. Deng et al. / Journal of Computational Physics 184 (2003) 215–243

7. Conclusions

In this paper, we described two numerical methods for three-dimensional elliptic interface problems in

which the coefficient, the source term, the solution and its derivatives, have a discontinuity across an in-

terface. The maximum preserving scheme coupled with the algebraic multigrid solver is relatively simpler to

implement. The fast solver can only be applied to the Poisson problem with piecewise constant coefficient.
The number of iterations is independent of the mesh sizes. More important, the computed normal deriv-

atives from each side of the interface appear to be second-order accurate. The fast solver can be applied to

Helmholtz/Poisson equations on irregular domains which may have many applications. The application to

a free boundary problem in identifying an unknown shape using the level set method is illustrated.

Fig. 4. The computed shape for the sphere case using a 60 60 60 grid and � ¼ 0:001 at different stages: (a) the initial guess; (b) after

11 iterations; (c) after 31 iterations; (d) after 51 iterations.

S. Deng et al. / Journal of Computational Physics 184 (2003) 215–243 241

Acknowledgements

The second and third authors are partially supported by ARO Grants 39676-MA and 43751-MA. The

third author is also partially supported by NSF Grants DMS-0073403 and DMS-0201094. We thank the

North Carolina Super-computing Center (NCSC) for letting us use the computing facilities there.

Fig. 5. The y–z transection of the computed shape for the ellipsoid case using a 60 60 60 grid at different stages: (a) the initial

guess; (b) after 41 iterations; (c) after 121 iterations; (d) after 201 iterations. The inner-most ellipse is the exact solution.

242 S. Deng et al. / Journal of Computational Physics 184 (2003) 215–243

References

[1] J. Adams, P. Swarztrauber, R. Sweet, Fishpack. Available from http://www.netlib.org/fishpack/.

[2] J. Bramble, J. King, A finite element method for interface problems in domains with smooth boundaries and interfaces, Adv.

Comput. Math. 6 (1996) 109–138.

[3] D. Calhoun, A Cartesian grid method for solving the streamfunction-vorticity equations in irregular geometries, Ph.D Thesis,

University of Washington, 1999.

[4] H.W. Chen, L. Greengard, A method of images for the evaluation of electrostatic fields in systems of closely spaced conducting

cylinders, SIAM J. Appl. Math. 58 (1998) 122–141.

[5] S. Deng. Immersed interface method for three dimensional interface problems and applications, Ph.D Thesis, North Carolina

State University, 2000.

[6] K. Ito, K. Kunisch, Z. Li, Level-set function approach to an inverse interface problem, Inverse Problems 17 (2001) 1225–1242.

[7] R.J. LeVeque, Z. Li, The immersed interface method for elliptic equations with discontinuous coefficients and singular sources,

SIAM J. Numer. Anal. 31 (1994) 1019–1044.

[8] R.J. LeVeque, Z. Li, Immersed interface method for Stokes flow with elastic boundaries or surface tension, SIAM J. Sci. Comput.

18 (1997) 709–735.

[9] Z. Li, The immersed interface method – a numerical approach for partial differential equations with interfaces, Ph.D Thesis,

University of Washington, 1994.

[10] Z. Li, A fast iterative algorithm for elliptic interface problems, SIAM J. Numer. Anal. 35 (1998) 230–254.

[11] Z. Li, K. Ito, Maximum principle preserving schemes for interface problems with discontinuous coefficients, SIAM J. Sci.

Comput. 23 (2001) 1225–1242.

[12] X. Liu, R. Fedkiw, M. Kang, A boundary condition capturing method for Poisson�s equation on irregular domain, J. Comput.

Phys. 160 (2000) 151–178.

[13] A. Mayo, A. Greenbaum, Fast parallel iterative solution of Poisson�s and the biharmonic equations on irregular regions, SIAM J.

Sci. Stat. Comput. 13 (1992) 101–118.

[14] S. Osher, J.A. Sethian, Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations,

J. Comput. Phys. 79 (1988) 12–49.

[15] J.W. Ruge, K. Stuben, Algebraic multigrid, in: S.F. McCormick (Ed.), Multigrid Method, SIAM, Philadelphia, 1987.

[16] K. Schittkowski, QL-quadratic Programming, version 1.5, 1991. Available from http://www.uni-bayreuth.de/departments/math/

�kschittkowski/ql.htm.

[17] A. Wiegmann, K. Bube, The immersed interface method for nonlinear differential equations with discontinuous coefficients and

singular sources, SIAM J. Numer. Anal. 35 (1998) 177–200.

S. Deng et al. / Journal of Computational Physics 184 (2003) 215–243 243

http://www.netlib.org/fishpack/
http://www.uni-bayreuth.de/departments/math/~kschittkowski/ql.htm
http://www.uni-bayreuth.de/departments/math/~kschittkowski/ql.htm

	Three-dimensional elliptic solvers for interface problems and applications
	Introduction
	Theoretical aspects
	A local coordinate system
	Interface relations

	The computational frame
	Setting-up a local coordinate system using the level set function
	Computing the projections

	The maximum principle preserving scheme
	Setting-up the finite difference equations at irregular grid points
	Computing the principal curvatures using the level set function
	Computing the tangential derivatives of interface quantities
	An optimization approach
	An algebraic multigrid solver
	Numerical results for the maximum principle preserving scheme
	A special case

	A fast Poisson solver for piecewise constant coefficient
	Setting-up the system of equations for [un] and computing the residual
	Computing the surface quantities of the jump [un] defined only at control points
	Computing the normal derivatives of the solution uijk at projections
	The pre-conditioning strategy
	An application to Helmholtz/Poisson equations on irregular domains
	Numerical examples of piecewise constant coefficient and irregular domains

	An application to an inverse problem of shape identification
	Outline of the algorithm
	Numerical simulations of shape identification.

	Conclusions
	Acknowledgements
	References

